Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops

نویسنده

  • T. J. Wang
چکیده

Aims. We report the first observation of multiple-periodic propagating disturbances along a fan-like coronal structure simultaneously detected in both intensity and Doppler shift in the Fe xii 195 Å line with the EUV Imaging Spectrometer (EIS) onboard Hinode. A new application of coronal seismology is provided based on this observation. Methods. We analyzed the EIS sit-and-stare mode observation of oscillations using the running difference and wavelet techniques. Results. Two harmonics with periods of 12 and 25 min are detected. We measured the Doppler shift amplitude of 1−2 km s−1, the relative intensity amplitude of 3%−5% and the apparent propagation speed of 100−120 km s−1. Conclusions. The amplitude relationship between intensity and Doppler shift oscillations provides convincing evidence that these propagating features are a manifestation of slow magnetoacoustic waves. Detection lengths (over which the waves are visible) of the 25 min wave are about 70−90 Mm, much longer than those of the 5 min wave previously detected by TRACE. This difference may be explained by the dependence of damping length on the wave period for thermal conduction. Based on a linear wave theory, we derive an inclination of the magnetic field to the line-of-sight about 59±8, a true propagation speed of 128±25 km s−1 and a temperature of 0.7±0.3 MK near the loop’s footpoint from our measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagating Slow Magnetoacoustic Waves in Coronal Loops Observed by Hinode/eis

We present the first Hinode/EIS observations of 5 min quasi-periodic oscillations detected in a transition-region line (He II) and five coronal lines (Fe X, Fe XII, Fe XIII, Fe XIV, and Fe XV) at the footpoint of a coronal loop. The oscillations exist throughout the whole observation, characterized by a series of wave packets with nearly constant period, typically persisting for 4-6 cycles with...

متن کامل

Wide-spectrum slow magnetoacoustic waves in coronal loops

A model interpreting variations of EUV brightness upward propagating in solar coronal loops as slow magnetoacoustic waves is developed. A loop is considered to have a non-zero plane inclination angle and offset of the circular loop centre from the baseline. The model also incorporates effects of dissipation and gravitational stratification. A linear evolutionary equation is derived and applied ...

متن کامل

Slow magnetoacoustic waves in coronal loops

A theoretical model interpreting propagating disturbances of EUV emission intensity, recently observed in coronal loops, is constructed in terms of slow magnetoacoustic waves. The model is one-dimensional and incorporates effects of nonlinearity, dissipation due to finite viscosity and thermal conduction, and gravitational stratification of plasma in the loop. It has been found that, for the ob...

متن کامل

Propagating magnetohydrodynamics waves in coronal loops.

High cadence Transition Region and Coronal Explorer (TRACE) observations show that outward propagating intensity disturbances are a common feature in large, quiescent coronal loops, close to active regions. An overview is given of measured parameters of such longitudinal oscillations in coronal loops. The observed oscillations are interpreted as propagating slow magnetoacoustic waves and are un...

متن کامل

Slow magnetohydrodynamic waves in the solar atmosphere.

There is increasingly strong observational evidence that slow magnetoacoustic modes arise in the solar atmosphere, either as propagating or standing waves. Sunspots, coronal plumes and coronal loops all appear to support slow modes. Here we examine theoretically how the slow mode may be extracted from the magnetohydrodynamic equations, considering the special case of a vertical magnetic field i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009